Powered By Blogger

lunes, 8 de junio de 2015

interaccionesfisica00

Interacciones Fundamentales

En física, se denominan interacciones fundamentales los cuatro tipos de campos cuánticos mediante los cuales interactúan las partículas. Según el modelo estándar, las partículas que interaccionan con las partículas materiales, fermiones, son los bosones .Existen 4 tipos de interacciones fundamentales: interacción nuclear fuerte, interacción nuclear débil, interacción electromagnética e interacción gravitatoria.

Interacciones Gravitatoria

Es la más conocida de las interacciones, (y al mismo tiempo la que plantea mayores problemas teóricos), ya que el Modelo Estándar no da cuenta de ellas, es muy débil y afecta a todas las partículas, e incluso a las sin masa como el fotón debido a que a grandes distancias, por su efecto acumulativo con la masa, tiene mayor efecto que las demás. Junto al electromagnetismo, son las interacciones que actúan a grandes distancias y contrariamente al electromagnetismo, sólo tiene carácter atractivo. A distancias atómicas, y en comparación con el resto de interacciones es la más débil de todas.

La interacción gravitatoria hace que cualquier tipo de materia provista de energía interaccione entre sí.


Interacciones electromagnética

El electromagnetismo es la interacción que actúa entre partículas con carga eléctrica. Este fenómeno incluye a la fuerza electrostática, que actúa entre cargas en reposo, y el efecto combinado de las fuerzas eléctrica y magnética que actúan entre cargas que se mueven una respecto a la otra.



El electromagnetismo también tiene un alcance infinito y como es mucho más fuerte que la gravedad describe casi todos los fenómenos de nuestra experiencia cotidiana. Estos van desde elrayo láser y la radio, a la estructura atómica y a fenómenos tales como la fricción y el arco iris.

Interacción Nuclear Fuerte

La interacción fuerte, también conocida como interacción nuclear fuerte, es la interacción que permite unirse a los quarks para formar hadrones. aquí las partículas también tienen carga, la carga de color. A pesar de su fuerte intensidad, su efecto sólo se aprecia a distancias muy cortas del orden del radio atómico. Según el modelo estándar, la partícula mediadora de esta fuerza es el gluón. La teoría que describe a esta interacción es la cromodinámica cuántica (QCD) y fue propuesta por David Politzer, Frank Wilczek y David Gross en la década de 1980.





Como resultado colateral de la interacción entre quarks, existe una manifestación de la fuerza nuclear fuerte que explica que dentro del núcleo atómico a los protones y neutrones. Debido a la carga positiva de los protones, para que éstos se encuentren estables en el núcleo debía existir una fuerza más fuerte que la electromagnética para retenerlos. Ahora sabemos que la verdadera causa de que los protones y neutrones no se desestabilicen es la llamada interacción fuerte residual.5 Esta interacción entre nucleones (protones y neutrones) se produce a través de parejas de quark-antiquark en forma de piones.

Interacción Nuclear Débil

La interacción débil, también conocida como interacción nuclear débil, se acopla a un tipo de carga llamada sabor, que la poseen los quarks y los leptones. Esta interacción es la causante de los cambios de sabor en estas partículas, en otras palabras es la responsable de que los quarks y leptones decaigan en partículas más livianas, además es la que produce desintegraciones beta.6 La teoría de Glashow -Weinberg -Salam estudia la interacción débil y la electrodinámica cuántica de manera unificada en lo que se llama Modelo electro débil.



Según el modelo estándar, la interacción débil es mediada por los bosones W y Z que son partículas muy masivas. Su intensidad es menor que la intensidad de la electromagnética y su alcance es menor que el de la interacción fuerte. Al igual que la interacción fuerte y la gravitatoria es esta una interacción únicamente atractiva.

LEY DE NEWTON



PRIMERA LEY : La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.


En realidad, es imposible encontrar un sistema de referencia inercial, ya que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, no obstante siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, por ejemplo, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial. Lo anterior porque a pesar que la Tierra cuenta con una aceleración traslacional y rotacional estas son del orden de 0.01 m/s^2 y en consecuencia podemos considerar que un sistema de referencia de un observador dentro de la superficie terrestre es un sistema de referencia inercial.



SEGUNDA LEY
: Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.






En la mayoría de las ocasiones hay más de una fuerza actuando sobre un objeto, en este caso es necesario determinar una sola fuerza equivalente ya que de ésta depende la aceleración resultante. Dicha fuerza equivalente se determina al sumar todas las fuerzas que actúan sobre el objeto y se le da el nombre de fuerza neta.7

TERCERA LEY : La tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo. Expone que por cada fuerza que actúa sobre un cuerpo (empuje), este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto.


Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".

Es importante observar que este principio relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.

No hay comentarios:

Publicar un comentario